Liu YC, Wang ZX, Pan JY, Wang LQ, Dai XY, Wu KF, Ye XW, Xu XL. Recent Advances in Imaging Agents Anchored with pH (Low) Insertion Peptides for Cancer Theranostics. Molecules. 2023, 28(5), 2175.
Gillies RJ. Cancer heterogeneity and metastasis: life at the edge. Clin Exp Metastasis. 2022, 39 (1), 15-19
Dharmaratne NU, Kaplan AR, Glazer PM. Targeting the Hypoxic and Acidic Tumor Microenvironment with pH-Sensitive Peptides, Cells 2021, 10 (3), 541.
Chaturvedi S, Hazari PP, Kaul A, Anju, Mishra AK. Microenvironment Stimulated Bioresponsive Small Molecule Carriers for Radiopharmaceuticals. ACS Omega. 2020, 5 (41), 26297-26306.
Reshetnyak YK, Moshnikova A, Andreev O, Engelman DM, Targeting Acidic Diseased Tissues by pH-Triggered Membrane-Associated Peptide Folding. Front Bioeng Biotechnol, 2020, 8, Article 335.
Zhang W, Yu L, Ji T, Wang C, Tumor Microenvironment–Responsive Peptide-Based Supramolecular Drug Delivery System. Front Chem., 2020, 8, Article 549.
Miguel V, Rey C, Aceña JL, Maqueda F, Fernández-Hernando C, Rodríguez-Puyol D, Vaquero JJ, Lamas S. The pHLIP system as a vehicle for microRNAs in the kidney. Nefrologia. 2020, 40 (5), 491-498.
Chen Y, Yang J, Fu S, Wu J. Gold Nanoparticles as Radiosensitizers in Cancer Radiotherapy. Int J Nanomedicine. 2020, 15, 9407-9430.
Vander Linden C, Corbet C. Therapeutic Targeting of Cancer Stem Cells:Integrating and Exploiting the Acidic Niche. Front Oncol, 2019, 9, 159.
Anemone A, Consolino L, Arena F, Capozza M, Longo DL. Imaging tumor acidosis: a survey of the available techniques for mapping in vivo tumor pH. Cancer Metastasis Rev, 2019, 38, 25-49.
McKay MJ, Afrose F, Koeppe RE, Greathouse DV. Helix formation and stability in membranes. Biochim Biophys Acta Biomembr. 2018, 1860, 10, 2108-2117
Tang H, Zhao W, Yu J, Li Y, Zhao C. Recent Development of pH-Responsive Polymers for Cancer Nanomedicine. Molecules, 2018, 24, E4.
Corbet C, Feron O. Tumour acidosis: from the passenger to the driver’s seat. Nat Rev Cancer, 2017, 17, 577-593.
Wyatt LC, Lewis JS, Andreev OA, Reshetnyak YK, Engelman DM. Applications of pHLIP technology for cancer imaging and therapy. Trends Biotechnol, 2017, 35, 653-664.
Li Z, Zhang Y, Zhu D, Li S, Yu X, Zhao Y, Ouyang X, Xie Z, Li L. Transporting carriers for intracellular targeting delivery via non-endocytic uptake pathways. Drug Deliv, 2017, 24, 45-55.
Shrestha S, Cooper LN, Andreev OA, Reshetnyak YK, Antosh MP. Gold Nanoparticles for radiation enhancement in vivo. J Rad Oncology, 2016, 31, 026.
Bernardo BC, Ooi JY, Lin RC, McMullen JR. miRNA therapeutics: a new class of drugs with potential therapeutic applications in the heart. Future Med Chem, 2015, 7, 1771-1792.
Wagner E. Tumor-targeted delivery of anti-microRNA for cancer therapy: pHLIP is key. Angew Chem Int Ed Engl, 2015, 54, 5824-5826.
Pereira MC, Reshetnyak YK, Andreev OA. Advanced targeted nanomedicine. J Biotechnol, 2015, 20, 88-97.
Deacon JC, Engelman DM, Barrera FN. Targeting acidity in diseased tissues: mechanism and applications of the membrane-inserting peptide, pHLIP. Arch Biochem Biophys, 2015, 565, 40-48.
Andreev OA, Engelman DM, Reshetnyak YK. Targeting diseased tissues by pHLIP insertion at low cell surface pH. Front Physiol, 2014, 5, Article 97.
Han L, Ma H, Guo Y, Kuang Y, He X, Jiang C. pH-Controlled delivery of nanoparticles into tumor cells. Adv Healthc Mater, 2013, 2, 1435-1439.
Fendos J, Engelman D. pHLIP and acidity as a universal biomarker for cancer. Yale J Biol Med, 2012, 85, 29-35.
Andreev OA, Engelman DM, Reshetnyak YK. pH-Sensitive membrane peptides (pHLIPs) as a novel class of delivery agents. Mol Membr Biol, 2010, 27, 341-352.
Andreev OA, Engelman DM, Reshetnyak YK. Targeting acidic diseased tissue: New technology based on use of the pH (Low) Insertion Peptide (pHLIP). Chim Oggi, 2009, 27, 34-37.


Silva TFD, Visca H, Klumpp C, Andreev OA, Reshetnyak YK, Machuqueiro M. Arginine Residues Modulate the Membrane Interactions of pHLIP Peptides. J Chem Inf Model. 2023, In press.
Silva TFD, Vila-Viçosa D, Machuqueiro M. Increasing the Realism of in Silico pHLIP Peptide Models with a Novel pH Gradient CpHMD Method. J Chem Theory Comput. 2022, 18 (11), 6472-6481.
Frolova AY, Pakhomov AA, Kakuev DL, Sungurova AS, Deyev SM, Martynov VI. Cancer cells targeting with genetically engineered constructs based on a pH- dependent membrane insertion peptide and fluorescent protein. Biochem Biophys Res Commun. 2022, 612, 141-146.
Vasquez-Montes V, Tyagi V, Sikorski E, Kyrychenko A, Freites JA, Thévenin D, Tobias DJ, Ladokhin AS. Ca2+ -dependent interactions between lipids and the tumor-targeting peptide pHLIP. Protein Sci. 2022, 31 (9), e4385.
Vasquez-Montes V, Goldberg AFX, Thévenin D, Ladokhin AS. Ca2+ and Mg2+ Influence the Thermodynamics of Peptide-Membrane Interactions. J Mol Biol. 2022, 167826.
Sharma GP, Meyer AC, Habeeb S, Karbach M, Müller G. Free-energy landscapes and insertion pathways for peptides in membrane environment. Phys Rev E. 2022, 106 (1-1), 014404.
Visca H, DuPont M, Moshnikova A, Crawford T, Engelman DM, Andreev OA, Reshetnyak YK. pHLIP Peptides Target Acidity in Activated Macrophages. Mol Imaging Biol. 2022, 24 (6), 874-885.
Hulikova A, Park KC, Loonat AA, Gunadasa-Rohling M, Curtis MK, Chung YJ, Wilson A, Carr CA, Trafford AW, Fournier M, Moshnikova A, Andreev OA, Reshetnyak YK, Riley PR, Smart N, Milne TA, Crump NT, Swietach P. Alkaline nucleoplasm facilitates contractile gene expression in the mammalian heart. Basic Res Cardiol. 2022, 117 (1), 17.
Ataka K, Drauschke J, Stulberg V, Koksch B, Heberle J. pH-induced insertion of pHLIP into a lipid bilayer: In-situ SEIRAS characterization of a folding intermediate at neutral pH. Biochim Biophys Acta Biomembr. 2022, 1864 (6), 183873.
Otieno SA, Qiang W. Roles of key residues and lipid dynamics reveal pHLIP- membrane interactions at intermediate pH. Biophys J. 2021, S0006-3495 (21), 00826-2.
Alford RF, Samanta R, Gray JJ. Diverse Scientific Benchmarks for Implicit Membrane Energy Functions. J Chem Theory Comput. 2021, 17, 5248-5261.
Frazee N, Mertz B. Intramolecular interactions play key role in stabilization of pHLIP at acidic conditions. J Comput Chem. 2021, 42, 1809-1816.
Silva TFD, Vila-Viçosa D, Machuqueiro M. Improved Protocol to Tackle the pH Effects on Membrane-Inserting Peptides. J Chem Theory Comput. 2021, 17 (7), 3830-3840.
Svoronos AA, Engelman DM. Pharmacokinetic modeling reveals parameters that govern tumor targeting and delivery by a pH-Low Insertion Peptide (pHLIP). Proc Natl Acad Sci U S A. 2021, 118 (1), e2016605118.
Burns V, Mertz B. Using Simulation to Understand the Role of Titration on the Stability of a Peptide-Lipid Bilayer Complex. Langmuir. 2020, 36 (41), 12272-12280.
Wu H, Estrella V, Beatty M, Abrahams D, El-Kenawi A, Russell S, Ibrahim- Hashim A, Longo DL, Reshetnyak YK, Moshnikova A, Andreev OA, Luddy K, Damaghi M, Kodumudi K, Pillai SR, Enriquez-Navas P, Pilon-Thomas S, Swietach P, Gillies RJ. T-cells produce acidic niches in lymph nodes to suppress their own effector functions. Nat Commun. 2020, 11 (1), 4113.
Slaybaugh G, Weerakkody D, Engelman DM, Andreev OA, Reshetnyak YK. Kinetics of pHLIP peptide insertion into and exit from a membrane. Proc Natl Acad Sci U S A. 2020, 117, 12095-12100.
Svoronos AA, Bahal R, Pereira MC, Barrera FN, Deacon JC, Bosenberg M, DiMaio D, Glazer PM, Engelman DM. Tumor-Targeted, Cytoplasmic Delivery of Large, Polar Molecules Using a pH-Low Insertion Peptide. Mol Pharm, 2020, 17, 461-471.
Rao BD, Chakraborty H, Chaudhuri A, Chattopadhyay A. Differential sensitivity of pHLIP to ester and ether lipids. Chem Phys Lipids, 2020, 226, 104849.
Bañó-Polo M, Martínez-Gil L, Barrera FN, Mingarro I. Insertion of Bacteriorhodopsin Helix C Variants into Biological Membranes. ACS Omega, 2019, 5, 556-560.
Vasquez-Montes V, Gerhart J, Thévenin D, Ladokhin AS. Divalent Cations and Lipid Composition Modulate Membrane Insertion and Cancer-Targeting Action of pHLIP. J Mol Biol, 2019, S0022-2836, 30612-30616.
Nguyen MHL, DiPasquale M, Rickeard BW, Doktorova M, Heberle FA, Scott HL, Barrera FN, Taylor G, Collier CP, Stanley CB, Katsaras J, Marquardt D. Peptide-Induced Lipid Flip-Flop in Asymmetric Liposomes Measured by Small Angle Neutron Scattering. Langmuir, 2019, 35, 11735-11744.
Westerfield J, Gupta C, Scott HL, Ye Y, Cameron A, Mertz B, Barrera FN. Ions Modulate Key Interactions between pHLIP and Lipid Membranes. Biophys J, 2019, 3, 117, 920-929.
Schlebach JP. Ions at the Interface: Pushing the pK of pHLIP. Biophys J, 2019, 117, 793-794.
Zhang K, Ahmed IA, Kratochvil HT, DeGrado WF, Gai F, Jo H. Synthesis and application of the blue fluorescent amino acid l-4-cyanotryptophan to assess peptide-membrane interactions. Chem Commun (Camb), 2019, 55, 5095-5098.
Scott HL, Heberle FA, Katsaras J, Barrera FN. Phosphatidylserine Asymmetry Promotes the Membrane Insertion of a Transmembrane Helix. Biophys J, 2019, S0006-3495, 19, 30189-4.
Rohani N, Hao L, Alexis MS, Joughin BA, Krismer K, Moufarrej MN, Soltis AR,Lauffenburger DA, Yaffe MB, Burge CB, Bhatia SN, Gertler FB. Acidification of tumor at stromal boundaries drives transcriptome alterations associated with aggressive phenotypes. Cancer Res, 2019, 79, 1952-1966.
Gupta C, Ren Y, Mertz B. Cooperative Nonbonded Forces Control Membrane Binding of the pH-Low Insertion Peptide pHLIP. Biophys J, 2018, 115, 2403-2412.
Rinaldi F, Hanieh PN, Del Favero E, Rondelli V, Brocca P, Pereira MC, Andreev OA, Reshetnyak YK, Marianecci C, Carafa M. Decoration of Nanovesicles with pH (Low) Insertion Peptide (pHLIP) for Targeted Delivery. Nanoscale Res Lett, 2018, 13, 391.
Otieno SA, Hanz SZ, Chakravorty B, Zhang A, Klees LM, An M, Qiang W. pH-dependent thermodynamic intermediates of pHLIP membrane insertion determined by solid-state NMR spectroscopy. Proc Natl Acad Sci U S A, 2018, 115, 12194-12199.
Rao BD, Chakraborty H, Keller S, Chattopadhyay A. Aggregation Behavior of pHLIP in Aqueous Solution at Low Concentrations: A Fluorescence Study. J Fluoresc, 2018, 28, 967-973.
Vila-Viçosa D, Silva TFD, Slaybaugh G, Reshetnyak YK, Andreev OA, Machuqueiro M. The membrane-induced pK(a) shifts in wt-pHLIP and its L16H variant. J Chem Theory Comput, 2018, 14, 3289-3297.
Karabadzhak AG, Weerakkody D, Deacon J, Andreev OA, Reshetnyak YK, Engelman DM. Bilayer thickness and curvature influence binding and insertion of a pHLIP peptide. Biophys J, 2018, 114, 2107-2115.
Gupta C, Mertz B. Protonation enhances the inherent helix-forming propensity of pHLIP. ACS Omega, 2017, 2, 8536-8542.
Vasquez-Montes V, Gerhart J, King KE, Thévenin D, Ladokhin AS. Comparison of lipid-dependent bilayer insertion of pHLIP and its P20G variant. Biochim Biophys Acta, 2018, 1860, 534-543.
Daniels JL, Crawford TM, Andreev OA, Reshetnyak YK. Synthesis and characterization of pHLIP® coated gold nanoparticles. Biochem Biophys Rep, 2017, 10, 62-69.
Pereira MC, Pianella M, Wei D, Moshnikova A, Marianecci C, Carafa M, Andreev OA, Reshetnyak YK. pH-Sensitive pHLIP® coated niosomes. Mol Membr Biol, 2017, 33, 51-63.
Scott HL, Westerfield JM, Barrera FN. Determination of the membrane translocation pK of the pH-Low Insertion Peptide. Biophys J, 2017, 113, 869-879.
Weerakkody D, Andreev OA, Reshetnyak YK. Insertion into lipid bilayer of truncated pHLIP® peptide. Biochem Biophys Rep, 2016, 8, 290-295.
Narayanan T, Weerakkody D, Karabadzhak AG, Anderson M, Andreev OA, Reshetnyak YK. pHLIP® peptide interaction with membrane monitored by SAXS. J Phys Chem B, 2016, 120, 11484-11491.
Weerakkody D, Moshnikova A, El-Sayed NS, Adochite RC, Slaybaugh G, Golijanin J, Tiwari RK, Andreev OA, Parang K, Reshetnyak YK. Novel pH-sensitive cyclic peptides. Sci Rep, 2016, 6, 31322.
Hanz SZ, Shu NS, Qian J, Christman N, Kranz P, An M, Grewer C, Qiang W., Protonation-driven membrane insertion of a pH-Low Insertion Peptide. Angew Chem Int Ed Engl, 2016, 55, 12376-12381.
Ng DP, Deber CM. Modulating transmembrane ?-helix interactions through pH-sensitive boundary residues. Biochemistry, 2016, 55, 4306-4315.
Sharma GP, Reshetnyak YK, Andreev OA, Karbach M, Müller G. Coil-helix transition of polypeptide at water-lipid interface J Stat Mech, 2015, 2015, P01034
Shu NS, Chung MS, Yao L, An M, Qiang W. Residue-specific structures and membrane locations of pH-low insertion peptide by solid-state nuclear magnetic resonance. Nat Commun, 2015, 6, 7787.
Wiedman G, Wimley WC, Hristova K. Testing the limits of rational design by engineering pH sensitivity into membrane-active peptides. Biochim Biophys Acta, 2015, 1848, 951-957.
Onyango JO, Chung MS, Eng CH, Klees LM, Langenbacher R, Yao L, An M. Noncanonical amino acids to improve the pH response of pHLIP insertion at tumor acidity. Angew Chem Int Ed Engl, 2015, 54, 3658-3663.
Scott HL, Nguyen VP, Alves DS, Davis FL, Booth KR, Bryner J, Barrera FN. The negative charge of the membrane has opposite effects on the membrane entry and exit of pH-low insertion peptide. Biochemistry, 2015, 54, 1709-1712.
Kyrychenko A, Vasquez-Montes V, Ulmschneider MB, Ladokhin AS. Lipid headgroups modulate membrane insertion of pHLIP peptide. Biophys J, 2015, 108, 791-794.
Kyrychenko A. NANOGOLD decorated by pHLIP peptide: comparative force field study. Phys Chem Chem Phys, 2015, 17, 12648-12660.
Brown MC, Yakubu RA, Taylor J, Halsey CM, Xiong J, Jiji RD, Cooley JW. Bilayer surface association of the pHLIP peptide promotes extensive backbone desolvation and helically-constrained structures. Biophys Chem, 2014, 187-188, 1-6.
Kong CP, Cui YL, Zhang JL, Zheng QC, Zhang HX. Mechanism of a pH-induced peptide inserting into a POPC bilayer: a molecular dynamic study. Curr Pharm Biotechnol, 2014, 15, 814-822.
Deng Y, Qian Z, Luo Y, Zhang Y, Mu Y, Wei G. Membrane binding and insertion of a pHLIP peptide studied by all-atom molecular dynamics simulations. Int J Mol Sci, 2013, 14, 14532-14549.
Yao L, Daniels J, Wijesinghe D, Andreev OA, Reshetnyak YK. pHLIP®-Mediated delivery of PEGylated liposomes to cancer cells. J Control Release, 2013, 167, 228-237.
Yao L, Daniels J, Moshnikova A, Kuznetsov S, Ahmed A, Engelman DM, Reshetnyak YK, Andreev OA. pHLIP peptide targets nanogold particles to tumors. Proc Natl Acad Sci U S A, 2013, 110, 465-470.
Fendos J, Barrera FN, Engelman DM. Aspartate embedding depth affects pHLIP’s insertion pKa. Biochemistry, 2013, 52, 4595-4604.
Weerakkody D, Moshnikova A, Thakur MS, Moshnikova V, Daniels J, Engelman DM, Andreev OA, Reshetnyak YK. Family of pH (low) insertion peptides for tumor targeting. Proc Natl Acad Sci U S A, 2013, 110, 5834-5839.
Barrera FN, Fendos J, Engelman DM. Membrane physical properties influence transmembrane helix formation. Proc Natl Acad Sci U S A, 2012, 109, 14422-14427.
Karabadzhak AG, Weerakkody D, Wijesinghe D, Thakur MS, Engelman DM, Andreev OA, Markin VS, Reshetnyak YK. Modulation of the pHLIP transmembrane helix insertion pathway. Biophys J, 2012, 102, 1846-1855.
Barrera FN, Weerakkody D, Anderson M, Andreev OA, Reshetnyak YK, Engelman DM. Roles of carboxyl groups in the transmembrane insertion of peptides. J Mol Biol, 2011, 413, 359-371.
Fu L, Liu J, Yan EC. Chiral sum frequency generation spectroscopy for characterizing protein secondary structures at interfaces. J Am Chem Soc, 2011, 133, 8094-8097.
Guo L, Gai F. Heterogeneous diffusion of a membrane-bound pHLIP peptide. Biophys J, 2010, 98, 2914-2922.
Musial-Siwek M, Karabadzhak A, Andreev OA, Reshetnyak YK, Engelman DM. Tuning the insertion properties of pHLIP. Biochim Biophys Acta, 2010, 1798, 1041-1046.
Andreev OA, Karabadzhak AG, Weerakkody D, Andreev GO, Engelman DM, Reshetnyak YK. pH (low) insertion peptide (pHLIP) inserts across a lipid bilayer as a helix and exits by a different path. Proc Natl Acad Sci U S A, 2010, 107, 4081-4086.
Thévenin D, An M, Engelman DM. pHLIP-mediated translocation of membrane-impermeable molecules into cells. Chem Biol, 2009, 16, 754-762.
Reshetnyak YK, Andreev OA, Segala M, Markin VS, Engelman DM. Energetics of peptide (pHLIP) binding to and folding across a lipid bilayer membrane. Proc Natl Acad Sci U S A, 2008, 105, 15340-15345.
Tang J, Gai F. Dissecting the membrane binding and insertion kinetics of a pHLIP peptide. Biochemistry, 2008, 47, 8250-8252.
Zoonens M, Reshetnyak YK, Engelman DM. Bilayer interactions of pHLIP, a peptide that can deliver drugs and target tumors. Biophys J, 2008, 95, 225-235.
Reshetnyak YK, Segala M, Andreev OA, Engelman DM. A monomeric membrane peptide that lives in three worlds: in solution, attached to, and inserted across lipid bilayers. Biophys J, 2007, 93, 2363-2372.
Reshetnyak YK, Andreev OA, Lehnert U, Engelman DM. Translocation of molecules by pH-dependent insertion of a transmembrane helix. Proc Natl Acad Sci U S A, 2006, 103, 6460-6465.
Hunt JF, Rath P, Rothschild KJ, Engelman DM. Spontaneous, pH-dependent membrane insertion of a transbilayer alpha-helix. Biochemistry, 1997, 36, 15177-15192.


Li S, Wang Y, Jiang H, Bai Y, Chen T, Chen M, Ma M, Yang S, Wu Y, Shi C, Wang F, Chen Y. Display of CCL21 on cancer cell membrane through genetic modification using a pH low insertion peptide. Int J Biol Macromol. 2023, 240, 124324.
Wu H, Zheng L, Ling N, Zheng L, Du Y, Zhang Q, Liu Y, Tan W, Qiu L. Chemically Synthetic Membrane Receptors Establish Cells with Artificial Sense- and-Respond Signaling Pathways. J Am Chem Soc. 2023, 145 (4), 2315-2321
DuPont M, Visca H, Moshnikova A, Engelman DM, Reshetnyak YK, Andreev OA. TTumor Treatment by pHLIP-Targeted Antigen Delivery. Front. Bioeng. Biotechnol. 2023, 10, 1082290.
Moshnikova A, DuPont M, Visca H, Engelman DM, Andreev OA, Reshetnyak YK. Eradication of tumors and development of anti-cancer immunity using STINGa targeted by pHLIP. Front Oncol. 2022, 12, 1023959.
Moshnikova A, Golijanin B, Amin A, Doyle J, Kott O, Gershman B, DuPont M, Li Y, Lu X, Engelman DM, Andreev OA, Reshetnyak YK and Golijanin D (2022) Targeting bladder urothelial carcinoma with pHLIP-ICG and inhibition of urothelial cancer cell proliferation by pHLIP-amanitin. Front. Urol., 2022, 2, 868919
Gayle S, Paradis T, Jones K, Vasquez J, Paralkar VM. Antigen-independent tumor targeting by CBX-12 (alphalex-exatecan) induces long-term antitumor immunity. Immunotherapy. 2022, 14 (18), 1467-1480.
Zhang M, Xi Y, Chen H, Hai W, Li B. In Vivo Distribution and Therapeutic Efficacy of Radioiodine-Labeled pH-Low Insertion Peptide Variant 3 in a Mouse Model of Breast Cancer. Mol Imaging. 2022, 2022, 7456365.
Deskeuvre M, Lan J, Dierge E, Messens J, Riant O, Corbet C, Feron O, Frédérick R. Targeting cancer cells in acidosis with conjugates between the carnitine palmitoyltransferase 1 inhibitor etomoxir and pH (low) Insertion Peptides. Int J Pharm. 2022, 624, 12204.1
Sharma KS, Raju M S, Phapale S, Valvi SK, Dubey AK, Goswami D, Ray D, De A, Phadnis PP, Aswal VK, Vatsa R, Sarma HD. Multimodal Applications of Zinc Gallate-Based Persistent Luminescent Nanoparticles in Cancer Treatment: Tumor Margining, Diagnosis, and Boron Neutron Capture Therapy. ACS Appl Bio Mater. 2022, 5(7), 3134-3145.
Zhang X, Rotllan N, Canfrán-Duque A, Sun J, Toczek J, Moshnikova A, Malik S, Price NL, Araldi E, Zhong W, Sadeghi MM, Andreev OA, Bahal R, Reshetnyak YK, Suárez Y, Fernández-Hernando C. Targeted Suppression of miRNA-33 Using pHLIP Improves Atherosclerosis Regression. Circ Res. 2022, 131(1), 77-90.
Ding GB, Zhu C, Wang Q, Cao H, Li BC, Yang P, Stauber RH, Nie G, Li Z. Molecularly engineered tumor acidity-responsive plant toxin gelonin for safe and efficient cancer therapy. Bioact Mater. 2022, 18, 42-55.
Sikorski EL, Wehr J, Ferraro NJ, Rizzo SM, Pires MM, Thévenin D. Selective Display of a Chemoattractant Agonist on Cancer Cells Activates the Formyl Peptide Receptor 1 on Immune Cells. Chembiochem. 2022, Feb 23, e202100521.
Mendoza C, Mizrachi D. Using the Power of Junctional Adhesion Molecules Combined with the Target of CAR-T to Inhibit Cancer Proliferation, Metastasis and Eradicate Tumors. Biomedicines. 2022, 10(2), 381.
Shi D, Zhang H, Zhang H, Li L, Li S, Zhao Y, Zheng C, Nie G, Yang X. The synergistic blood-vessel-embolization of coagulation fusion protein with temperature sensitive nanogels in interventional therapies on hepatocellular carcinoma. Chem. Engineering. J., 2022, 443, 1, 134357.
Sun Y, Hu L, Yang P, Zhang M, Wang X, Xiao H, Qiao C, Wang J, Luo L, Feng J, Zheng Y, Wang Y, Shi Y, Chen G. pH Low Insertion Peptide-Modified Programmed Cell Death-Ligand 1 Potently Suppresses T-Cell Activation Under Acidic Condition. Front Immunol. 2021, 12, 794226.
Chen Y, Wu T, Liu S, Pan W, Li N, Tang B. Cell membrane-anchoring covalent organic framework nanosheets for single-laser-triggered synergistic tumor therapy. Chem Commun (Camb). 2021, 57(88), 11685-11688.
Gayle S, Aiello R, Leelatian N, Beckta JM, Bechtold J, Bourassa P, Csengery J, Maguire RJ, Marshall D, Sundaram RK, Doorn JV, Jones K, Moore H, Lopresti-Morrow L, Paradis T, Tylaska L, Zhang Q, Visca H, Reshetnyak YK, Andreev OA, Engelman DM, Glazer PM, Bindra RS, Paralkar VM, Tumor-selective, antigen-independent delivery of a pH sensitive peptide-topoisomerase inhibitor conjugate suppresses tumor growth without systemic toxicity, NAR Cancer, 2021, 3, 2, 1-13.
Li Q, Zhang J, Li J, Ye H, Li M, Hou W, Li H, Wang Z. Glutathione-Activated NO-/ROS-Generation Nanoparticles to Modulate the Tumor Hypoxic Microenvironment for Enhancing the Effect of HIFU-Combined Chemotherapy. ACS Appl Mater Interfaces. 2021, 13(23), 26808-26823.
Chen YH, Yu MM, Wang ZG. Inhibition of MDA-MB-231 cell proliferation by pHLIP(Var7)-P1AP and SPECT imaging of MDA-MB-231 breast cancer-bearing nude mice using 125I-pHLIP(Var7)-P1AP. Nuklearmedizin. 2021, 60 (3), 240-248.
Pershina AG, Brikunova OY, Demin AM, Abakumov MA, Vaneev AN, Naumenko VA, Erofeev AS, Gorelkin PV, Nizamov TR, Muslimov AR, Timin AS, Malkeyeva D, Kiseleva E, Vtorushin SV, Larionova IV, Gereng EA, Minin AS, Murzakaev AM, Krasnov VP, Majouga AG, Ogorodova LM. Variation in tumor pH affects pH-triggered delivery of peptide-modified magnetic nanoparticles. Nanomedicine. 2020, 32, 102317.
Sah B, Wu J, Vanasse A, Pandey NK, Chudal L, Huang Z, Song W, Yu H, Ma L, Chen W, Antosh MP. Effects of Nanoparticle Size and Radiation Energy on Copper- Cysteamine Nanoparticles for X-ray Induced Photodynamic Therapy. Nanomaterials (Basel). 2020, 10, 1087.
Wang YQ, Ji MY, Wang C. Endoplasmic reticulum-targeted glutathione and pH dual responsive vitamin lipid nanovesicles for tocopheryl DM1 delivery and cancer therapy. Int J Pharm, 2020, 582, 119331.
Wehr J, Sikorski EL, Bloch E, Feigman MS, Ferraro NJ, Baybutt TR, Snook AE, Pires MM, Thévenin D. pH-Dependent Grafting of Cancer Cells with Antigenic Epitopes Promotes Selective Antibody-Mediated Cytotoxicity. J Med Chem, 2020, 63, 3713-3722.
Kaplan AR, Pham H, Liu Y, Oyaghire S, Bahal R, Engelman DM, Glazer PM. Ku80-targeted pH-sensitive peptide-PNA conjugates are tumor selective and sensitize cancer cells to ionizing radiation. Mol Cancer Res. 2020, 18, 873-882
Han H, Hou Y, Chen X, Zhang P, Kang M, Jin Q, Ji J, Gao M. Metformin-Induced Stromal Depletion to Enhance the Penetration of Gemcitabine-Loaded Magnetic Nanoparticles for Pancreatic Cancer Targeted Therapy.J Am Chem Soc, 2020, 142(10), 4944-4954.
Yu M, Chen Y, Wang Z, Ding X. pHLIP(Var7)-P1AP suppresses tumor cell proliferation in MDA-MB-231 triple-negative breast cancer by targeting protease activated receptor 1. Breast Cancer Res Treat, 2020, 180(2), 379-384.
Sahraei M, Chaube B, Liu Y, Sun J, Kaplan A, Price NL, Ding W, Oyaghire S, García-Milian R, Mehta S, Reshetnyak YK, Bahal R, Fiorina P, Glazer PM, Rimm DL, Fernández-Hernando C, Suárez Y. Suppressing miR-21 activity in tumor-associated macrophages promotes an antitumor immune response. J Clin Invest, 2019, e127125.
Price NL, Miguel V, Ding W, Singh AK, Malik S, Rotllan N, Moshnikova A, Toczek J, Zeiss C, Sadeghi MM, Arias N, Baldán Á, Andreev OA, Rodríguez-Puyol D, Bahal R, Reshetnyak YK, Suárez Y, Fernández-Hernando C, Lamas S. Genetic deficiency or pharmacological inhibition of miR-33 protects from kidney fibrosis. JCI Insight, 2019, 4(22), e131102.
Sah B, Shrestha S, Wu J, Vanasse A, Cooper LN, Antosh M. Gold Nanoparticles Enhance Radiation Therapy at Low Concentrations, and Remain in Tumors for Days. J Biomed Nanotechnol. 2019, 15, 1960-1967
Shrestha S, Wu J, Sah B, Vanasse A, Cooper LN, Ma L, Li G, Zheng H, Chen W, Antosh MP. X-ray induced photodynamic therapy with copper-cysteamine nanoparticles in mice tumors. Proc Natl Acad Sci U S A. 2019, 116, 16823-16828.
Zhang HJ, Zhao X, Chen LJ, Yang CX, Yan XP. pH-Driven Targeting Nanoprobe with Dual-Responsive Drug Release for Persistent Luminescence Imaging and Chemotherapy of Tumor. Anal Chem, 2019, 92(1), 1179-1188.
Ding L, Zhang C, Liu Z, Huang Q, Zhang Y, Li S, Nie G, Tang H, Wang Y. Metabonomic investigation of biological effects of a new vessel target protein tTF-pHLIP in a mouse model. J Proteome Res, 2019, 19(1), 238-247.
Pershina AG, Ya Brikunova O, Demin AM, Shevelev OB, Razumov IA, Zavjalov EL,Malkeyeva D, Kiseleva E, Krakhmal’ NV, Vtorushin SV, Yarnykh VL, Ivanov VV, Pleshko RI, Krasnov VP, Ogorodova LM. pH-triggered delivery of magnetic nanoparticles depends on tumor volume. Nanomedicine, 2019, 23, 102086.
Pershina AG, Brikunova OY, Perekucha NA, Demin AM, Shevelev OB, Malkeyeva D, Kiseleva E, Minin AS, Kostikova LA, Stepanov IV, Kuznetsov DK, Shur VY, Krasnov VP. Supporting data and methods for the characterization of iron oxide nanoparticles conjugated with pH-(low)-insertion peptide, testing their cytotoxicity and analyses of biodistribution in SCID mice bearing MDA-MB231 tumor. Data Brief, 2019, 29, 105062.
Son SM, Yun J, Lee SH, Han HS, Lim YH, Woo CG, Lee HC, Song HG, Gu YM, Lee HJ, Lee OJ. Therapeutic Effect of pHLIP-mediated CEACAM6 Gene Silencing in Lung Adenocarcinoma. Sci Rep, 2019, 9, 11607.
Huang W, Zhao H, Wan J, Zhou Y, Xu Q, Zhao Y, Yang X, Gan L. pH- and photothermal-driven multistage delivery nanoplatform for overcoming cancer drug resistance. Theranostics, 2019, 9, 3825-3839.
Joyce S, Nour AM. Blocking transmembrane219 protein signaling inhibits autophagy and restores normal cell death. PLoS One, 2019, 14, e0218091.
Huang W, Zhao H, Wan J, Zhou Y, Xu Q, Zhao Y, Yang X, Gan L. pH- and photothermal-driven multistage delivery nanoplatform for overcoming cancer drug resistance. Theranostics, 2019, 9, 3825-3839.
Zhang K, Lin H, Mao J, Luo X, Wei R, Su Z, Zhou B, Li D, Gao J, Shan H. An extracellular pH-driven targeted multifunctional manganese arsenite delivery system for tumor imaging and therapy. Biomater Sci, 2019, 7, 2480-2490.
Ji T, Lang J, Ning B, Qi F, Wang H, Zhang Y, Zhao R, Yang X, Zhang L, Li W, Shi X, Qin Z, Zhao Y, Nie G. Enhanced Natural Killer Cell Immunotherapy by Rationally Assembling Fc Fragments of Antibodies onto Tumor Membranes. Adv Mater, 2018, 31, 6, e1804395.
Gerhart J, Thévenin AF, Bloch E, King KE, Thévenin D. Inhibiting Epidermal Growth Factor Receptor Dimerization and Signaling Through Targeted Delivery of a Juxtamembrane Domain Peptide Mimic. ACS Chem Biol, 2018, 13, 2623-2632.
Zhao Z, Li C, Song B, Sun J, Fu X, Yang F, Wang H, Yan B. pH low insertion peptide mediated cell division cycle-associated protein 1 -siRNA transportation for prostatic cancer therapy targeted to the tumor microenvironment. Biochem Biophys Res Commun, 2018, 503, 1761-1767.
Wyatt LC, Moshnikova A, Crawford T, Engelman DM, Andreev OA, Reshetnyak YK. Peptides of pHLIP family for targeted intracellular and extracellular delivery of cargo molecules to tumors. Proc Natl Acad Sci U S A, 2018, 115, E2811-E2818.
Burns KE, Delehanty JB. Cellular delivery of doxorubicin mediated by disulfide reduction of a peptide-dendrimer bioconjugate. Int J Pharm, 2018, 545, 64-73.
Zhang Y, Ji W, He L, Chen Y, Ding X, Sun Y, Hu S, Yang H, Huang W, Zhang Y, Liu F, Xia L. E. coli Nissle 1917-derived minicells for targeted delivery of chemotherapeutic drug to hypoxic regions for cancer therapy. Theranostics, 2018, 8, 1690-1705.
Qiu L, Valente M, Dolen Y, Jäger E, Beest MT, Zheng L, Figdor CG, Verdoes M. Endolysosomal-escape nanovaccines through adjuvant-induced tumor antigen assembly for enhanced effector CD8(+) T cell activation. Small, 2018, 14, e1703539.
Ding GB, Sun J, Wu G, Li B, Yang P, Li Z, Nie G. Robust anticancer efficacy of a biologically synthesized tumor acidity-responsive and autophagy-inducing functional Beclin 1. ACS Appl Mater Interfaces, 2018, 10, 5227-5239.
Ai F, Wang N, Zhang X, Sun T, Zhu Q, Kong W, Wang F, Zhu G. An upconversion nanoplatform with extracellular pH-driven tumor-targeting ability for improved photodynamic therapy. Nanoscale, 2018, 10, 4432-4441.
Özeş AR, Wang Y, Zong X, Fang F, Pilrose J, Nephew KP. Therapeutic targeting using tumor specific peptides inhibits long non-coding RNA HOTAIR activity in ovarian and breast cancer. Sci Rep, 2017, 7, 894.
Burns KE, Hensley H, Robinson MK, Thévenin D. Therapeutic efficacy of a family of pHLIP-MMAF conjugates in cancer cells and mouse models. Mol Pharm, 2017, 14, 415-422.
Zhang Y, Dang M, Tian Y, Zhu Y, Liu W, Tian W, Su Y, Ni Q, Xu C, Lu N, Tao J, Li Y, Zhao S, Zhao Y, Yang Z, Sun L, Teng Z, Lu G. Tumor acidic microenvironment targeted drug delivery based on pHLIP modified mesoporous organosilica nanoparticles. ACS Appl Mater Interfaces, 2017, 9, 30543-30552.
Tian Y, Zhang Y, Teng Z, Tian W, Luo S, Kong X, Su X, Tang Y, Wang S, Lu G. pH-Dependent transmembrane activity of peptide-functionalized gold nanostars for computed tomography/photoacoustic imaging and photothermal therapy. ACS Appl Mater Interfaces, 2017, 9, 2114-2122.
Burns KE, McCleerey TP, Thévenin D. pH-Selective cytotoxicity of pHLIP-antimicrobial peptide conjugates. Sci Rep, 2016, 6, 28465.
Song Q, Chuan X, Chen B, He B, Zhang H, Dai W, Wang X, Zhang Q. A smart tumor targeting peptide-drug conjugate, pHLIP-SS-DOX: synthesis and cellular uptake on MCF-7 and MCF-7/Adr cells. Drug Deliv, 2016, 23, 1734-1746.
Yu M, Guo F, Wang J, Tan F, Li N. A pH-Driven and photoresponsive nanocarrier: Remotely-controlled by near-infrared light for stepwise antitumor treatment. Biomaterials, 2016, 79, 25-35.
Yu M, Guo F, Wang J, Tan F, Li N. Photosensitizer-loaded pH-responsive hollow gold nanospheres for single light-induced photothermal/photodynamic therapy. ACS Appl Mater Interfaces, 2015, 7, 17592-17597.
Burns KE, Thévenin D. Down-regulation of PAR1 activity with a pHLIP-based allosteric antagonist induces cancer cell death. Biochem J, 2015, 472, 287-295.
Cheng CJ, Bahal R, Babar IA, Pincus Z, Barrera F, Liu C, Svoronos A, Braddock DT, Glazer PM, Engelman DM, Saltzman WM, Slack FJ. MicroRNA silencing for cancer therapy targeted to the tumour microenvironment. Nature, 2015, 518, 107-110.
Li S, Tian Y, Zhao Y, Zhang Y, Su S, Wang J, Wu M, Shi Q, Anderson GJ, Thomsen J, Zhao R, Ji T, Wang J, Nie G. pHLIP-mediated targeting of truncated tissue factor to tumor vessels causes vascular occlusion and impairs tumor growth. Oncotarget, 2015, 6, 23523-23532.
Burns KE, Robinson MK, Thévenin D. Inhibition of cancer cell proliferation and breast tumor targeting of pHLIP-monomethyl auristatin E conjugates. Mol Pharm, 2015, 12, 1250-1258.
Antosh MP, Wijesinghe DD, Shrestha S, Lanou R, Huang YH, Hasselbacher T, Fox D, Neretti N, Sun S, Katenka N, Cooper LN, Andreev OA, Reshetnyak YK. Enhancement of radiation effect on cancer cells by gold-pHLIP. Proc Natl Acad Sci U S A, 2015, 112, 5372-5376.
Wijesinghe D, Arachchige MC, Lu A, Reshetnyak YK, Andreev OA. pH dependent transfer of nano-pores into membrane of cancer cells to induce apoptosis. Sci Rep, 2013, 3, 3560.
Moshnikova A, Moshnikova V, Andreev OA, Reshetnyak YK. Antiproliferative effect of pHLIP-amanitin. Biochemistry, 2013, 52, 1171-1178.
Zhao Z, Meng H, Wang N, Donovan MJ, Fu T, You M, Chen Z, Zhang X, Tan W. A controlled-release nanocarrier with extracellular pH value driven tumor targeting and translocation for drug delivery. Angew Chem Int Ed Engl, 2013, 52, 7487-7491.
Wijesinghe D, Engelman DM, Andreev OA, Reshetnyak YK. Tuning a polar molecule for selective cytoplasmic delivery by a pH (Low) insertion peptide., Biochemistry, 2011, 50, 10215-10222.
An M, Wijesinghe D, Andreev OA, Reshetnyak YK, Engelman DM. pH-(low)-insertion-peptide (pHLIP) translocation of membrane impermeable phalloidin toxin inhibits cancer cell proliferation. Proc Natl Acad Sci U S A, 2010, 107, 20246-20250.


Mc Larney BE, Kim M, Roberts S, Skubal M, Hsu HT, Ogirala A, Pratt EC, Pillarsetty NVK, Heller DA, Lewis JS, Grimm J. Ambient Light Resistant Shortwave Infrared Fluorescence Imaging for Preclinical Tumor Delineation via the pH Low- Insertion Peptide Conjugated to Indocyanine Green. J Nucl Med. 2023, In press
Ye Q, Jo J, Wang CY, Oh H, Choy TJ, Kim K, Dâ Alessandro A, Reshetnyak YK, Jung SY, Chen Z, Marrelli SP, Lee HK. Astrocytic Slc4a4 regulates blood-brain barrier integrity in healthy and stroke brains via a NO-CCL2-CCR2 pathway. bioRxiv [Preprint]. 2023, 2023.04.03.535167.
Bauer D, Visca H, Weerakkody A, Carter LM, Samuels Z, Kaminsky S, Andreev OA, Reshetnyak YK, Lewis JS. PET Imaging of Acidic Tumor Environment With 89Zr-labeled pHLIP Probes. Front Oncol. 2022, 12, 882541.
Chen Y, Su Y, Pang X, Song X, Zhao W, Yu M. Synthesis and Evaluation of Technetium-99m-Labeled pH (Low) Insertion Peptide Variant 7 for Early Diagnosis of MDA-MB-231 Triple-Negative Breast Cancer by Targeting the Tumor Microenvironment. Front Oncol. 2022, 12, 869260.
Hulikova A, Park KC, Loonat AA, Gunadasa-Rohling M, Curtis MK, Chung YJ, Wilson A, Carr CA, Trafford AW, Fournier M, Moshnikova A, Andreev OA, Reshetnyak YK, Riley PR, Smart N, Milne TA, Crump NT, Swietach P. Alkaline nucleoplasm facilitates contractile gene expression in the mammalian heart. Basic Res Cardiol. 2022, 117(1), 17.
Wei X, Zhao H, Huang G, Liu J, He W, Huang Q. ES-MION-Based Dual-Modality PET/MRI Probes for Acidic Tumor Microenvironment Imaging. ACS Omega. 2022, 7(4), 3442-3451.
Wu F, Chen Y, Li D, Wang Z, Yu M. Synthesis and Evaluation of Radioiodine- Labeled pH (Low) Insertion Peptide Variant 7-Like Peptide as a Noninvasive Tumor Microenvironment Imaging Agent in a Mouse MDA-MB-231 Triple-Negative Breast Cancer Model. Mol Imaging Biol. 2022, 24(4), 570-579.
Wilson AD, Richards MA, Curtis MK, Rohling M, Monterisi S, Loonat AA, Miller J, Ball V, Lewis A, Tyler D, Moshnikova A, Andreev OA, Reshetnyak YK, Carr C, Swietach P. Acidic environments trigger intracellular H+-sensing FAK proteins to re-balance sarcolemmal acid-base transporters and auto-regulate cardiomyocyte pH. Cardiovasc Res. 2021, Dec 13, cvab364.
MacCuaig WM, Fouts BL, McNally MW, Grizzle WE, Chuong P, Samykutty A, Mukherjee P, Li M, Jasinski JB, Behkam B, McNally LR. Active Targeting Significantly Outperforms Nanoparticle Size in Facilitating Tumor-Specific Uptake in Orthotopic Pancreatic Cancer. ACS Appl. Mater. Interfaces 2021, 13(42), 49614-49630.
Hao L, Rohani N, Zhao RT, Pulver EM, Mak H, Kelada OJ, Ko H, Fleming HE, Gertler FB, Bhatia SN. Microenvironment-triggered multimodal precision diagnostics. Nat Mater. 2021, 20(10), 1440-1448.
Demin AM, Pershina AG, Minin AS, Brikunova OY, Murzakaev AM, Perekucha NA, Romashchenko AV, Shevelev OB, Uimin MA, Byzov IV, Malkeyeva D, Kiseleva E, Efimova LV, Vtorushin SV, Ogorodova LM, Krasnov VP. Smart Design of a pH- Responsive System Based on pHLIP-Modified Magnetite Nanoparticles for Tumor MRI. ACS Appl Mater Interfaces. 2021, 13(31), 36800-36815.
Mitrou A, Feng X, Khan A, Yaroslavsky AN. Feasibility of dual-contrast fluorescence imaging of pathological breast tissues. J Biophotonics. 2021 May 19, e202100007.
Sharma KS, Raju SM, Goswami D, De A, Phadnis PP, Vatsa RK. pH-(Low)-Insertion Peptide-Assisted Detection and Diagnosis of Cancer Using Zinc Gallate-Based Persistent Luminescence Nanoparticles, ACS Appl. Bio Mater. 2021, 4, 1, 742–751.
Chen YH, Yu MM, Wang ZG. Inhibition of MDA-MB-231 cell proliferation by pHLIP(Var7)-P1AP and SPECT imaging of MDA-MB-231 breast cancer-bearing nude mice using 125I-pHLIP(Var7)-P1AP. Nuklearmedizin. 2021, 60(3), 240-248.
Yu M, Sun Y, Yang G, Wang Z. An Experimental Study on I-pHLIP (Var7) for SPECT/CT Imaging of an MDA-MB-231 Triple- Negative Breast Cancer Mouse Model by Targeting the Tumor Microenvironment. Mol Imaging. 2021, 5565932.
Miska J, Rashidi A, Lee-Chang C, Gao P, Lopez-Rosas A, Zhang P, Burga R, Castro B, Xiao T, Han Y, Hou D, Sampat S, Cordero A, Stoolman JS, Horbinski CM, Burns M, Reshetnyak YK, Chandel NS, Lesniak MS. Polyamines drive myeloid cell survival by buffering intracellular pH to promote immunosuppression in glioblastoma. Sci Adv. 2021, 7(8), eabc8929.
Crawford T, Moshnikova A, Roles S, Weerakkody D, DuPont M, Carter LM, Shen J, Engelman DM, Lewis JS, Andreev OA, Reshetnyak YK. pHLIP ICG for delineation of tumors and blood flow during fluorescence-guided surgery. Sci Rep. 2020, 10 (1), 18356.
Liu W, Deacon J, Yan H, Sun B, Liu Y, Hegan D, Li Q, Coman D, Parent M, Hyder F, Roberts K, Nath R, Tillement O, Engelman D, Glazer P. Tumor-targeted pH-low insertion peptide delivery of theranostic gadolinium nanoparticles for image- guided nanoparticle-enhanced radiation therapy. Transl Oncol. 2020, 13 (11), 100839.
Henry KE, Chaney AM, Nagle VL, Cropper HC, Mozaffari S, Slaybaugh G, Parang K, Andreev O, Reshetnyak YK, James ML, Lewis JS. Demarcation of Sepsis-Induced Peripheral and Central Acidosis with pH-Low Insertion Cyclic (pHLIC) Peptide. J Nucl Med, 2020, 61 (9), 1361-1368.
Pereira PMR, Edwards KJ, Mandleywala K, Carter LM, Escorcia FE, Campesato LF, Cornejo M, Abma L, Mohsen AA, Iacobuzio-Donahue CA, Merghoub T, Lewis JS. iNOS regulates the therapeutic response of pancreatic cancer cells to radiation therapy. Cancer Res, 2020, 80, 1681-1692.
Schuerle S, Furubayashi M, Soleimany AP, Gwisai T, Huang W, Voigt C, Bhatia SN. Genetic Encoding of Targeted Magnetic Resonance Imaging Contrast Agents for Tumor Imaging. ACS Synth Biol, 2020, 9, 392-401.
Di Z, Zhao J, Chu H, Xue W, Zhao Y, Li L. An Acidic-Microenvironment-Driven DNA Nanomachine Enables Specific ATP Imaging in the Extracellular Milieu of Tumor. Adv Mater, 2019, e1901885.
Wei D, Engelman DM, Reshetnyak YK, Andreev OA. Mapping pH at Cancer Cell Surfaces. Mol Imaging Biol, 2019, 21, 1020-1025.
Brito J, Golijanin B, Kott O, Moshnikova A, Mueller-Leonhard C, Gershman B, Andreev OA, Reshetnyak YK, Amin A, Golijanin D. Ex-vivo Imaging of Upper Tract Urothelial Carcinoma Using Novel pH Low Insertion Peptide (Variant 3), a Molecular Imaging Probe. Urology, 2020,139, 134-140
Roberts S, Strome A, Choi C, Andreou C, Kossatz S, Brand C, Williams T, Bradbury M, Kircher MF, Reshetnyak YK, Grimm J, Lewis JS, Reiner T. Acid specific dark quencher QC1 pHLIP for multi-spectral optoacoustic diagnoses of breast cancer. Sci Rep, 2019, 9, 8550.
Liao G, Wang L, Yu W. Application of novel targeted molecular imaging probes in the early diagnosis of upper urinary tract epithelial carcinoma. Oncol Lett, 2018, 16, 6349-6354.
Tian Y, Zhang Y, Teng Z, Tian W, Luo S, Kong X, Su X, Tang Y, Wang S, Lu G. pH-Dependent transmembrane activity of peptide-functionalized gold nanostars for computed tomography/photoacoustic imaging and photothermal therapy. ACS Appl Mater Interfaces, 2017, 9, 2114-2122.
Wei Y, Liao R, Mahmood AA, Xu H, Zhou Q. pH-responsive pHLIP (pH low insertion peptide) nanoclusters of superparamagnetic iron oxide nanoparticles as a tumor-selective MRI contrast agent. Acta Biomater, 2017, 55, 194-203.
Golijanin J, Amin A, Moshnikova A, Brito JM, Tran TY, Adochite RC, Andreev GO, Crawford T, Engelman DM, Andreev OA, Reshetnyak YK, Golijanin D. Targeted imaging of urothelium carcinoma in human bladders by an ICG pHLIP peptide ex vivo. Proc Natl Acad Sci U S A, 2016, 113, 11829-11834.
Adochite RC, Moshnikova A, Golijanin J, Andreev OA, Katenka NV, Reshetnyak YK. Comparative study of tumor targeting and biodistribution of pH (Low) Insertion Peptides (pHLIP® peptides) conjugated with different fluorescent dyes. Mol Imaging Biol, 2016, 18, 686-696.
Anderson M, Moshnikova A, Engelman DM, Reshetnyak YK, Andreev OA. Probe for the measurement of cell surface pH in vivo and ex vivo. Proc Natl Acad Sci U S A, 2016, 113, 8177-8181.
Demoin DW, Wyatt LC, Edwards KJ, Abdel-Atti D, Sarparanta M, Pourat J, Longo VA, Carlin SD, Engelman DM, Andreev OA, Reshetnyak YK, Viola-Villegas N, Lewis JS. PET imaging of extracellular pH in tumors with (64)Cu- and (18)F-labeled pHLIP peptides: A structure-activity optimization study. Bioconjug Chem, 2016, 27, 2014-2023.
Zeiderman MR, Morgan DE, Christein JD, Grizzle WE, McMasters KM, McNally LR. Acidic pH-targeted chitosan capped mesoporous silica coated gold nanorods facilitate detection of pancreatic tumors via multispectral optoacoustic tomography. ACS Biomater Sci Eng, 2016, 2, 1108-1120.
Janic B, Bhuiyan MP, Ewing JR, Ali MM. pH-Dependent cellular internalization of paramagnetic nanoparticle. ACS Sens, 2016, 1, 975-978.
Tapmeier TT, Moshnikova A, Beech J, Allen D, Kinchesh P, Smart S, Harris A, McIntyre A, Engelman DM, Andreev OA, Reshetnyak YK, Muschel RJ. The pH low insertion peptide pHLIP Variant 3 as a novel marker of acidic malignant lesions. Proc Natl Acad Sci U S A, 2015, 112, 9710-9715.
Cardo L, Thomas SG, Mazharian A, Pikramenou Z, Rappoport JZ, Hannon MJ, Watson SP. Accessible synthetic probes for staining actin inside platelets and megakaryocytes by employing lifeact peptide. Chembiochem, 2015, 16, 1680-1688.
Reshetnyak YK. Imaging tumor acidity: pH-Low Insertion Peptide probe for optoacoustic tomography. Clin Cancer Res, 2015, 21, 4502-4504.
Kimbrough CW, Khanal A, Zeiderman M, Khanal BR, Burton NC, McMasters KM, Vickers SM, Grizzle WE, McNally LR. Targeting acidity in pancreatic adenocarcinoma: multispectral optoacoustic tomography detects pH-Low Insertion Peptide probes in vivo. Clin Cancer Res, 2015, 21, 4576-4585.
Karabadzhak AG, An M, Yao L, Langenbacher R, Moshnikova A, Adochite RC, Andreev OA, Reshetnyak YK, Engelman DM. pHLIP-FIRE, a cell insertion-triggered fluorescent probe for imaging tumors demonstrates targeted cargo delivery in vivo. ACS Chem Biol, 2014, 9, 2545-2553.
Cruz-Monserrate Z, Roland CL, Deng D, Arumugam T, Moshnikova A, Andreev OA, Reshetnyak YK, Logsdon CD. Targeting pancreatic ductal adenocarcinoma acidic microenvironment. Sci Rep, 2014, 4, 4410.
Luo Z, Loja MN, Farwell DG, Luu QC, Donald PJ, Amott D, Truong AQ, Gandour-Edwards R, Nitin N. Widefield optical imaging of changes in uptake of glucose and tissue extracellular pH in head and neck cancer. Cancer Prev Res, 2014, 7, 1035-1044.
Adochite RC, Moshnikova A, Carlin SD, Guerrieri RA, Andreev OA, Lewis JS, Reshetnyak YK. Targeting breast tumors with pH (low) insertion peptides. Mol Pharm, 2014, 11, 2896-2905.
Viola-Villegas NT, Carlin SD, Ackerstaff E, Sevak KK, Divilov V, Serganova I, Kruchevsky N, Anderson M, Blasberg RG, Andreev OA, Engelman DM, Koutcher JA, Reshetnyak YK, Lewis JS. Understanding the pharmacological properties of a metabolic PET tracer in prostate cancer. Proc Natl Acad Sci U S A, 2014, 111, 7254-7259.
Li N, Yin L, Thévenin D, Yamada Y, Limmon G, Chen J, Chow VT, Engelman DM, Engelward BP. Peptide targeting and imaging of damaged lung tissue in influenza-infected mice. Future Microbiol, 2013 8, 257-69.
Loja MN, Luo Z, Greg Farwell D, Luu QC, Donald PJ, Amott D, Truong AQ, Gandour-Edwards RF, Nitin N. Optical molecular imaging detects changes in extracellular pH with the development of head and neck cancer. Int J Cancer, 2013, 132, 1613-1623.
Sosunov EA, Anyukhovsky EP, Sosunov AA, Moshnikova A, Wijesinghe D, Engelman DM, Reshetnyak YK, Andreev OA. pH (low) insertion peptide (pHLIP) targets ischemic myocardium. Proc Natl Acad Sci U S A, 2013, 110, 82-86.
Emmetiere F, Irwin C, Viola-Villegas NT, Longo V, Cheal SM, Zanzonico P, Pillarsetty N, Weber WA, Lewis JS, Reiner T. 18F-labeled-bioorthogonal liposomes for in vivo targeting. Bioconjugate Chem, 2013, 24, 1784–1789.
Macholl S, Morrison MS, Iveson P, Arbo BE, Andreev OA, Reshetnyak YK, Engelman DM, Johannesen E. In vivo pH imaging with (99m)Tc-pHLIP. Mol Imaging Biol, 2012, 14, 725-734.
Davies A, Lewis DJ, Watson SP, Thomas SG, Pikramenou Z. pH-controlled delivery of luminescent europium coated nanoparticles into platelets. Proc Natl Acad Sci U S A, 2012, 109, 1862-1867.
Daumar P, Wanger-Baumann CA, Pillarsetty N, Fabrizio L, Carlin SD, Andreev OA, Reshetnyak YK, Lewis JS. Efficient (18)F-labeling of large 37-amino-acid pHLIP peptide analogues and their biological evaluation. Bioconjug Chem, 2012, 23, 1557-1566.
Reshetnyak YK, Yao L, Zheng S, Kuznetsov S, Engelman DM, Andreev OA. Measuring tumor aggressiveness and targeting metastatic lesions with fluorescent pHLIP. Mol Imaging Biol, 2011, 13, 1146-1156.
Segala J, Engelman DM, Reshetnyak YK, Andreev OA. Accurate analysis of tumor margins using a fluorescent pH Low Insertion Peptide (pHLIP). Int J Mol Sci, 2009, 10, 3478-3487.
Vavere AL, Biddlecombe GB, Spees WM, Garbow JR, Wijesinghe D, Andreev OA, Engelman DM, Reshetnyak YK, Lewis JS. A novel technology for the imaging of acidic prostate tumors by positron emission tomography. Cancer Res, 2009, 69, 4510-4516.
Andreev OA, Dupuy AD, Segala M, Sandugu S, Serra DA, Chichester CO, Engelman DM, Reshetnyak YK. Mechanism and uses of a membrane peptide that targets tumors and other acidic tissues in vivo. Proc Natl Acad Sci U S A, 2007, 104, 7893-7898.